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1. Introduction 

A short review will benefit the readers to understand the excitation of surface plasmon polaritons 

(SPPs) and their propagation along the metal-dielectric interface. This work enables the readers to 

understand the background theory of SPPs as well as the overview of recent applications in the field of 

Plasmonics. It is preferred over previous articles because the underlying physics of SPPs is presented 

with experimental as well as theoretical results which explains wide range of applications of SPPs in 

different fields of science. The earlier literature in this field is outdated and there is a firm need to 

discuss the advancement in the applications of SPPs during the recent years.  

2. Theoretical and Experimental Approach 

In this section, surface plasmon polariton scattering and backscattering by using SNOM technique is 

presented. At the end, theoretical verification of SPPs as hot carriers is also discussed.   

 
Figure-1 Schematic shows the scattering phenomena of SPPs on a “metal-dielectric” interface [9,40].  

3. Applications of SPPs 

SPP has a wide variety of features and implementations. Some of those are outlined below:- 

3.1 Plasmonic Bandgap 

The optical devices can be controlled by modifying their optical properties through photonic materials. 

The propagation of light can be inhibited due to the formation of photonic bandgap in the dispersion 

curves of the materials that have made up of periodically different refractive index. For 3D photonic 

crystals, photonic bandgaps in the microwave regime was reported by Yablonovitch [37,38]. When a 

metallic grating as Plasmonic band gap (PBG)(Muhammad Javaid, 2015) which directly finds its 

applications in surface-enhanced Raman scattering (SERS)[36].   
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3.2 Nanolithography 

The field of Plasmonic offers several applications in nanolithography. For this purpose, extraordinary 

transmission is used which was discovered by T.W. Ebbesen in 1998. In order to minimize the feature 

size of electronic devices to about 50nm, a lithographic technique needs to be established to fabricate 

such type of integrated circuits with smaller dimensions [30]. 

 
Figure-2 Plasmonic flying head for nanolithography using ultraviolet light and rotating substrate. (Schuller et 

al., 2010) 

So, in order to reach the anticipated feature size, an optical lithography at shorter optical wavelengths 

can be used. When the wavelength becomes smaller and smaller, the light sources like photoresists 

and optics are increasingly more complex. Plasmonic flying head for nanolithography using ultraviolet 

light and rotating substrate is shown in Figure-10. So, by making further improvements in uniformity 

and sub wavelength resolution, plasmonic nanolithography can be used as a best alternative to other 

Nano lithographic systems. 

3.3 Telecommunication 

Plasmonic devices of specific geometrical parameters have ability to excite SPPs by coupling desired 

incident frequencies, which can be used to design filters.  

3.4 Electronic Devices 

Photonic band gap has wide range applications to reduce noise especially in electronic devices such as 

laser diodes, light emitting diodes (LEDs) etc.The plasmonic materials are biocompatible, have high 

mechanical strength, excellent thermal and electrical conductivity which make them useful for 

biological and chemical sensors. 

4. Conclusion 

The study reveals that the the field of Plasmonic offers several applications in nanolithography. For 

this purpose, extraordinary transmission is used which was discovered by T.W. Ebbesen in 1998. In 

order to minimize the feature size of electronic devices to about 50nm, a lithographic technique needs 

to be established to fabricate such type of integrated circuits with smaller dimensions [30].It can be 

used in various industrial and manufacturing operations. 
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